Real-Time Dense Simultaneous Localization and Mapping using Monocular Cameras

نویسنده

  • Nicholas Greene
چکیده

Cameras are powerful sensors for robotic navigation as they provide high-resolution environment information (color, shape, texture, etc.), while being lightweight, lowpower, and inexpensive. Exploiting such sensor data for navigation tasks typically falls into the realm of monocular simultaneous localization and mapping (SLAM), where both the robot’s pose and a map of the environment are estimated concurrently from the imagery produced by a single camera mounted on the robot. This thesis presents a monocular SLAM solution capable of reconstructing dense 3D geometry online without the aid of a graphics processing unit (GPU). The key contribution is a multi-resolution depth estimation and spatial smoothing process that exploits the correlation between low-texture image regions and simple planar structure to adaptively scale the complexity of the generated keyframe depthmaps to the quality of the input imagery. High-texture image regions are represented at higher resolutions to capture fine detail, while low-texture regions are represented at coarser resolutions for smooth surfaces. This approach allows for significant computational savings while simultaneously increasing reconstruction density and quality when compared to the state-of-the-art. Preliminary qualitative results are also presented for an adaptive meshing technique that generates dense reconstructions using only the pixels necessary to represent the scene geometry, which further reduces the computational requirements for fully dense reconstructions. Thesis Supervisor: Nicholas Roy Title: Associate Professor of Aeronautics and Astronautics Thesis Supervisor: Dr. Ted J. Steiner Title: Senior Member of the Technical Staff, Draper

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Deeply Supervised Visual Descriptors for Dense Monocular Reconstruction

Visual SLAM (Simultaneous Localization and Mapping) methods typically rely on handcrafted visual features or raw RGB values for establishing correspondences between images. These features, while suitable for sparse mapping, often lead to ambiguous matches at texture-less regions when performing dense reconstruction due to the aperture problem. In this work, we explore the use of learned feature...

متن کامل

Semi-Dense 3D Semantic Mapping from Monocular SLAM

The bundle of geometry and appearance in computer vision has proven to be a promising solution for robots across a wide variety of applications. Stereo cameras and RGBD sensors are widely used to realise fast 3D reconstruction and trajectory tracking in a dense way. However, they lack flexibility of seamless switch between different scaled environments, i.e., indoor and outdoor scenes. In addit...

متن کامل

Original Loop-Closure Detection Algorithm for Monocular vSLAM

Vision-based simultaneous localization and mapping (vSLAM) is a well-established problem in mobile robotics and monocular vSLAM is one of the most challenging variations of that problem nowadays. In this work we study one of the core post-processing optimization mechanisms in vSLAM, e.g. loop-closure detection. We analyze the existing methods and propose original algorithm for loop-closure dete...

متن کامل

Improving Localization Robustness in Monocular SLAM Using a High-Speed Camera

In the robotics community localization and mapping of an unknown environment is a well-studied problem. To solve this problem in real-time using visual input, a standard monocular Simultaneous Localization and Mapping (SLAM) algorithm can be used. This algorithm is very stable when smooth motion is expected, but in case of erratic or sudden movements, the camera pose typically gets lost. To imp...

متن کامل

Camera-Agnostic Monocular SLAM and Semi-dense 3D Reconstruction

This paper discusses localisation and mapping techniques based on a single camera. After introducing the given problem, which is known as monocular SLAM, a new camera agnostic monocular SLAM system (CAM-SLAM) is presented. It was developed within the scope of this work and is inspired by recently proposed SLAM-methods. In contrast to most other systems, it supports any central camera model such...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016